投稿

ラベル(微分方程式)が付いた投稿を表示しています

超幾何関数 PDF

ご不明点・お気付きの点がございましたらコメント欄またはTwitter ( @FugaciousShade ) までよろしくお願いします。 最終更新日:2021年8月7日 (右上のボタンを押すことでポップアップ表示ができます。) 更新履歴 2021年5月 9日 公開開始(内容:まえがき,付録(Poisson和公式, Gamma関数)) 2021年5月10日 付録:Hermite関数系の完全性を追加 2021年5月11日 軽微な修正 2021年5月19日 付録:Pochhammer記号(公式集),常微分方程式論(定数係数2階常微分方程式,Euler方程式)を追加 2021年5月22日 初等関数のGaussの超幾何級数表示の節、Pochhammer記号の公式の証明を追加 2021年5月23日 誤植の修正 2021年5月26日 Gaussの超幾何微分方程式,一般化超幾何微分方程式を追加 2021年5月30日 収束半径と特異点,Gaussの超幾何定理を追加 2021年6月15日 一部の記述を修正・追加 2021年7月22日 多重対数関数,Riemann Zeta関数を追加 2021年7月27日 誤植の修正,演習問題の追加 2021年8月 1日 Euler作用素の冪乗についての記述を追加,軽微な修正 2021年8月 2日 軽微な修正 2021年8月 7日 Gauss積分,定数係数斉次常微分方程式,線型空間,第二種Stirling数についての記述を追加 Tweet

超幾何関数についてのプレゼンで使ったスライド

学生の年度末発表会で発表した際に使ったパワポを載せておきます。 30分程大学の先生方の前で話せる滅多にない機会だったので勉強中のことを発表しました。 口頭による補足説明を多目にしたのでスライドだけ見てどれほど伝わるか謎ですが、折角なので公開しておきます。 (スマホで見る場合は画面を横にすると見易いと思います。タップする毎に進むはずです。) Tweet

万有引力の一次元問題

万有引力の働く二物体の運動を調べる。 衝突するまでに掛かる時間や、途中の運動の様子を運動方程式から解析的に求める。 質量\(m,M\)の質点が\(t=0\)で距離\(R_0\)だけ離れて静止していたとする。この二物体には互いに万有引力のみが働き、その他の力は働かないものとする。また、万有引力定数を\(G\)とする。 この二物体は直線上で運動するから、位置をそれぞれ\(x,X\)とし、\(x(0)=R_0,X(0)=0,\dot{x}(0)=\dot{X}(0)=0\)とすれば運動方程式は、 \begin{align} \begin{cases} m\ddot{x}&=-\dfrac{GMm}{(x-X)^2}\\ M\ddot{X}&=\dfrac{GMm}{(x-X)^2} \end{cases} \end{align} となる。(但し、ドットは時間微分を表す。) 二式を重心運動と相対運動に分けると、 \begin{align} \dfrac{d}{dt}\left(m\dot{x}+M\dot{X}\right)&=0\\ \dfrac{d^2}{dt^2}\left(x-X\right)&=-\dfrac{G(M+m)}{(x-X)^2} \end{align} となる。 第一式を初期条件に注意して\(0\)から\(t\)で定積分すると、 \begin{align} m\left(\dot{x}(t)-\dot{x}(0)\right)+M\left(\dot{X}(t)-\dot{X}(0)\right)=0\\ m\dot{x}(t)+M\dot{X}(t)=0 \end{align} であり、更に同じ区間で定積分すると、 \begin{align} m\left(x(t)-x(0)\right)+M\left(X(t)-X(0)\right)=0\\ mx(t)+MX(t)=mR_0 \end{align} を得る。 第二式で\(R:=x-X\)と定義すると、\(R(0)=R_0,\dot{R}(0)=0\)であり、 \begin{align} \ddot{R}=-\dfrac{G(M+m)}{...